
How does your favorite object-oriented library solve this problem?

Mixins do have one limitation: they enforce a linearity of composition. This strict-
ness is sometimes misplaced, because it puts a burden on programmers that may not
be necessary. A generalization of mixins called traits says that instead of extending
a single mixin, we can extend a set of them. Of course, the moment we extend more
than one, we must again contend with potential name-clashes. Thus traits must be
equipped with mechanisms for resolving name clashes, often in the form of some
name-combination algebra. Traits thus offer a nice complement to mixins, enabling
programmers to choose the mechanism that best fits their needs. As a result, Racket
provides both mixins and traits.

11 Memory Management

11.1 Garbage
We use the term garbage to refer to allocated memory that is no longer necessary.
There are two distinct kinds of allocations that a typical programming language run-
time system performs. One kind is for the environment; this follows a push-and-pop
discipline consistent with the nature of static scope. Returning from a procedure returns
that procedure’s allocated environment space for subsequent use, seemingly free of
cost. In contrast, allocation on the store has to follow an value’s lifetime, which could It’s not free! The

machine has to
execute an explicit
“pop” instruction to
recover that space.
As a result, it is not
necessarily cheaper
than other memory
management
strategies.

outlive that of the scope in which it was created—indeed, it may live forever. Therefore,
we need a different strategy for recovering space consumed by store-allocated garbage.

There are many methods for recovering this space, but they largely fall into two
camps: manual and automatic. Manual collection depends on the developer being able
to know and correctly discard unwated memory. Traditionally, humans have not proven
especially good at this (though in some cases they have knowledge a machine might
not [REF]). Over several decades, therefore, automated methods have become nearly
ubiquitous.

11.2 What is “Correct” Garbage Recovery?
Garbage recovery should neither recover space too early (soundness) nor too late (com-
pleteness). While both can be regarded as flaws, they are not symmetric in their impact:
arguably, recovering too early is much worse. That is because if we recover a store lo-
cation prematurely, the computation will continue to use it and potentially write other
data into it, thereby working with nonsensical data. This leads at the very least to pro-
gram incorrectness, but in more extreme situations leads to much worse phenomena
such as security violations. In contrast, holding on to memory for too long decreases
performance and eventually causes the program to terminate even though, in a pla-
tonic sense, it had memory available. This performance degradation and premature
termination is always annoying, and in certain mission-critical systems can be deeply
problematic, but at least the program does not compute nonsense.

Ideally we would love to have all three: automation, soundness, and completeness.
However, we face a classic “pick two” tradeoff. Ideal humans are capable of attaining

81



both soundness and completeness, but in practice rarely achieve either. A computer can You, surely, are
perfect, but what of
your fellow
developers? And by
the way, the
economics
discipline has been
looking for you.

offer automation and either soundness or completeness, but computability arguments
demonstrate that automation can’t be accompanied by both of the others. In practice,
therefore, automated techniques offer soundness, on the grounds that: (a) it does the
least harm, (b) it is relatively easy to implement, and (c) with some human intervention
it can more closely approximate completeness.

11.3 Manual Reclamation
The most manual approach would be to entrust all de-allocation to the human. In
C, for instance, there are two basic primitives: malloc for allocation and free to
reclaim. malloc consumes a size and returns a reference to a store-allocated value;
free consumes the references and reclaims its assocated memory. “Moloch has been

used figuratively in
English literature
from John Milton’s
Paradise Lost
(1667) to Allen
Ginsberg’s ‘Howl’
(1955), to refer to a
person or thing
demanding or
requiring a very
costly sacrifice.”
—Wikipedia on
Moloch

“I do not consider it
coincidental that
this name sounds
like malloc.”
—Ian Barland

11.3.1 The Cost of Fully-Manual Reclamation

Let’s start by asking what the cost of these operations is. We might begin by as-
suming that malloc has an associated register pointing into the store (like new-loc

[REF]), and on every allocation it simply obtains the next free locations. This model
is extremely simple—in fact, deceptively so. The problem arises when we free these
values. Provided the first free is the last malloc, we would encounter no problem; but
store data often do not follow a stack discipline. When we free anything but the most
recently allocated value, we leave holes in the store. These holes lead to fragmentation,
and in the worst case we become unable to allocate any objects even though there is
ample space in the store—just split up across many fragments, no one of which is large
enough.

Exercise

In principle, we could eliminate fragmentation by making all the free space
be contiguous. What does it take to do so? Think through all the conse-
quences and sketch whether you can in fact do this manually.

While fragmentation remains an insuperable problem in most manual memory
management schemes, there is more to consider even in this seemingly simple dis-
cipline. What happens when we free a value? The run-time system has to somehow
record that it is now available for future allocation. It does by maintaining a free list: a
linked-list of the free spaces. A little reflection immediately suggests a question: where
is the free list itself stored, and who manages its memory? The answer is that the free
list references are stored in the freed cells, which immediately implies a minimum size
for each allocation.

In principle, then, each malloc must now traverse the free list to find a suitable
freed spot. I say “suitable” because the allocator must make a complex decision.
Should it take the first slot that matches or a later one? And either way, what does
“matches” mean? Should it take only slots the exact right size, or take larger slots and
break them up into smaller ones (thereby increasing the likelihood of creating unusably
small holes)? And so on.

Developers like allocation to be cheap. Therefore, in practice, allocation systems Failing to make
allocation cheap
makes developers
try to encode tricks
based on reusing
values, thereby
reducing clarity and
quite possibly also
correctness.

82

http://en.wikipedia.org/wiki/Moloch
http://en.wikipedia.org/wiki/Moloch


tend to use just a fixed set of sizes, often in powers of two. This makes it possible to
maintain not one but many free lists, each of holes of the same size (which is a power
of two). A table refers to each of these lists, and indexing in the table is cheap by using
bit-shifting. In return, developers sacrifice space, because objects not a power-of-two
size will end up being needlessly padded. (This is a classic computer science trade-off:
trading space for time.) Also, free must put the freed memory in the right slot, and
perhaps even break up larger blocks into multiple smaller blocks to prepare for future
allocations. Nothing about this model is inherently as cheap as it seems. In particular, free

is not free.Of course, all this assumes that developers can function in even a sound, much less
complete, fashion. But they don’t.

11.3.2 Reference Counting

Because entirely manual reclamation puts an undue burden on developers, some semi-
automated techniques have seen long-standing use, most notably reference counting.

In reference counting, every value has associated with it a count of how many
references it has. The developer is responsible for incrementing and decrementing
these counts. When the count reaches zero, the value’s space can safely be restored for
future reuse.

Observe, immediately, that there are two significant assumptions lurking under this
simple definition.

1. That the developer can track every reference. Recall that every alias is also a
reference. Thus, a developer who writes

(let ([x <some value>])

(let ([y x])

...))

has to remember that y is a second reference to the same value being referred to
by x, and increment the count accordingly.

2. That every value has only a finite number of references. This assumption fails
when a value has cycles.

Because of the need to manually increment and decrement references, this technique
suffers from a lack of both soundness and completeness. Indeed, the second assumption
above naturally leads to lack of completeness, while the first assumption points to the
simplest way to break soundness.

The perils of manual memory management are subtle and run deeper. Because
developers are charged with freeing memory (or, equivalently, managing reference
counts), the policy of memory management has to become part of every library’s inter-
face: effectively, “Who’s going to de-allocate values allocated by this library, and will
the library de-allocate values passed to it?” It is unfortunately difficult to document and
follow these policies precisely, but even worse, it pollutes the description of the library
with low-level details that usually have nothing to do with its intended behavior.

83



One intriguing idea is to automate the insertion of reference increments and decre-
ments. Another is to add cycle-detection to the implementation. Doing both solves
many of the above problems, but reference counting suffers from others, too:

• The reference count increases the size of each object. It has to be large enough to
not overflow, yet small enough to not appreciably increase the program’s mem-
ory footprint.

• The time spent to increase and decrease these counts can become significant.

• If an object’s reference count becomes zero, everything it refers to must also
have their reference counts decreased—possibly recursively. This means a single
deallocation action can have a large time impact, barring clever “lazy” techniques
(which then increase the program’s memory footprint).

• To decrement the reference count, we have to walk objects that are garbage. This
seems highly counterproductive: to traverse objects we are no longer interested
in. This has practical consequences: objects we are not interested in may not
have been accessed in a while, which means they might have been paged out.
The reference counter has to page them back in, just to inform them that they are
no longer needed.

For all these reasons, reference counting should be used with utmost care. You
should not accept it as a default, but rather ask yourself why it is you reject what are
generally better automated techniques.

Exercise

If the reference count overflows, which correctness properties are hurt and
how? Examine tradeoffs.

11.4 Automated Reclamation, or Garbage Collection
Some people call
reference counting
a “garbage
collection”
technique. I prefer
to use the latter
term to refer only to
fully-automated
techniques. But do
beware this
potential for
confusion when
browsing the Web.

Now let’s briefly examine the idea of having the language’s run-time system automate
the process of reclaiming garbage. We’ll use the abbrevation GC (for garbage collec-
tion) to refer to both the algorithm and the process, letting context disambiguate.

11.4.1 Overview

The key idea behind all GC algorithms is to traverse memory by following references
between values. Traversal begins at a root set, which is all the places from which a
program can possibly refer to a value in the store. Typically the root set consists of
every bound variable in the environment, and any global variables. In an actual work-
ing implementation, the implementor must be careful to also note ephemeral values
such as references in registers. From this root set, the algorithm walks all accessible
values using a variety of algorithms that are usually variations on depth-first search to Depth-first search is

generally preferred
because it works
well with
stack-based
implementations.
Of course, you
might (and should)
wonder where the
GC’s own stack is
stored!

identify everything that is live (i.e., usable through some sequence of program opera-
tions). Everything else, by definition, is garbage. Again, different algorithms address
the recovery of this space in different ways.

84



11.4.2 Truth and Provability

If you read carefully, you’ll notice that I slipped an algorithm into the above descrip-
tion. This is an implementation detail, not part of the specification! Indeed, the spec-
ification of garbage collection is in terms of truth: we want to collect precisely all
the values that are garbage, no more and no less. But we cannot obtain truth for any
Turing-complete programming language, so we must settle for provability. And the
style of algorithm described above gives us an efficient “proof” of liveness, rendering
the complement garbage. There are of course variations on this scheme that enable
us to collect more or less garbage, which correspond to different strengths of proof a
value’s “garbageness”.

This last remark highlights a weakness of the strict specification, which says noth-
ing about how much garbage should be collected. It is actually useful to think about
the extreme cases.

Do Now!

It is trivial to define a sound garbage collection strategy. Similarly, it is
also trivial to define a complete garbage collection strategy. Do you see
how?

To be sound, we simply have to make sure we don’t accidentally remove anything
that is live. The one way to be absolutely certain of this is to collect no garbage at all.
Dually, the trivial complete GC collects everything. Obviously neither of these is useful
(and the latter is certain to be highly dangerous). But this highlights that in practice, we
want a GC that is not only sound but as complete as possible, while also being efficient.

11.4.3 Central Assumptions

Being able to soundly perform GC depends on two critical assumptions. The first is one
about the language’s implementation and the other about the language’s semantics.

1. When confronted with a value, the GC needs to know what kind of value it is,
and how its memory representation is laid out. For instance, when the traversal
reaches a cons cell, it must know:

(a) that this is a cons cell; and hence,

(b) that the first is at, say, a four byte offset, and

(c) that the rest is at, say, an eight byte offset.

Obviously, this property must hold recursively, thus enabling a traversal algo-
rithm to correctly map the values in memory.

2. That programs cannot manufacture references in two ways:

(a) Object references cannot reside outside the implementation’s pre-defined
root set.

(b) Object references can only refer to well-defined points in objects.

85



When the second property is violated, the GC can effectively go haywire, misin-
terpreting data. The first property sounds obvious: when it is violated, it seems
the run-time system has clearly failed to obey the language’s semantics. How-
ever, the consequences of this property are subtle, as we discuss below [REF].

11.5 Convervative Garbage Collection
We’ve explained that the typical root set consists of the environment, global variables,
and some choice ephemerals. Where else might references reside?

In most languages, nowhere else. But some languages (I’m looking at you, C and
C++) allow references to be turned into arbitrary numbers, and arbitrary numbers to be
turned back into references. As a result, in principle, any numeric value in the program
(which, because of the nature of C and C++’s types, virtually any value in the program)
could potentially be treated as a reference.

This is problematic for two reasons. First, it means the GC can no longer limit its
attention to the small root set; instead, the entire store is now potentially the root set.
Second, if the GC tries to modify the object in any way—e.g., to record a “visited” bit
during traversal—then it is potentially changing non-reference values: e.g., it might
actually be changing an innocent numeric constant in the program. As a result, the
particular confluence of features in languages like C and C++ conspire to make sound,
efficient GC extremely difficult.

But not impossible. A stimulating line of research called conservative GC has man-
aged to create reasonably effective GC systems for such languages. The principle be-
hind conservative GC notes that, while in principle every store location might be a
root, in practice many of them are not. It then proceeds through a series of increasingly
clever observations to deduce what must not be a reference (the opposite of a traditional
GC) and can hence be safely ignored: for instance, on a word-aligned architecture, no
odd number can never be a reference. By skipping most of the store, by making some
basic assumptions about program behavior (e.g., that it will not manufacture certain
kinds of references), and by being careful to not modify the store—e.g., changing bits
in values, or moving data around—it can actually yield a reasonably effective GC strat-
egy. Nevertheless, it is a

bit of a dog walking
on its hind legs.

Conservative GC is often popular with programming language implementations that
are written in, or rely on a base of code in, C or C++. For instance, early versions of
Racket relied exclusively on it. There are many good reasons for this:

1. It offers a quick bootstrapping technique, so the language implementor can focus
on other, more innovative, features.

2. A language that controls all references (as Racket does) can easily create memory
representations that are especially conducive to increasing the effectiveness of
the GC (e.g., padding all true numbers with a one in the least-significant-bit).

3. It enables easy interoperation with useful libraries written in C and C++ (pro-
vided, of course, that they too meet the expectations of the technique).

A word on vocabulary is in order. As we have argued [REF], all practical GC
techniques are “conservative” in that they approximate truth with reachability. The

86



word “conservative” has, however, become a term-of-art to refer to a GC technique that
operates in an uncooperative (and hopefully not hostile) run-time system.

11.6 Precise Garbage Collection
In conventional GC terminology, the opposite of “conservative” is precise. This, too,
is a misnomer, because a GC cannot be precise, i.e., both sound and complete. Rather,
precision here is a statement about the ability to identify references: when confronted
with a value, a precise GC knows exactly what is and isn’t a reference, and where the
references are. This removes the monumental effort that a conservative GC has to put
into guessing non-references (and hoping to eliminate as many potential references as
possible through this process).

Within the space of precise GC, which is what most contemporary language run-
time systems use, there is a wide range of implementation techniques. I refer you to
Paul Wilson’s survey (which, despite its relative age in this fast-moving field, remains
an excellent resource), as well as the book and other materials from Richard Jones. In
particular, for a quick and readable overview of a generational garbage collector, read
Simple Generational Garbage Collection and Fast Allocation.

12 Representation Decisions
Go back and look again at our interpreter for function as values [REF]. Do you see
something curiously non-uniform about it?

Do Now!

No, really, do. Do you?

Consider how we chose to represent our two different kinds of values: numbers and
functions. Ignoring the superficial numV and closV wrappers, focus on the underlying
data representations. We represented the interpreted language’s numbers as Racket
numbers, but we did not represent the interpreted language’s functions (closures) as
Racket functions (closures).

That’s our non-uniformity. It would have been more uniform to use Racket’s rep-
resentations for both, or also to not use Racket’s representation for either. So why did
we make this particular choice?

We were trying to illustrate and point, and that point is what we will explore right
now.

12.1 Changing Representations
For a moment, let’s explore numbers. Racket’s numbers make a good target for reuse
because they are so powerful: we get arbitrary-sized integers (bignums), rationals
(which benefit from the bignum representation of integers), complex numbers, and
so on. Therefore, they can represent most ordinary programming language number
systems. However, that doesn’t mean they are what we want: they could be too little
or too much.

87

ftp://ftp.cs.utexas.edu/pub/garbage/gcsurvey.ps
http://www.cs.kent.ac.uk/people/staff/rej/gc.html
http://www.cs.princeton.edu/~appel/papers/143.ps

